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Abstract—This paper proposes a control strategy for a
single-stage, three-phase, photovoltaic (PV) system that is
connected to a distribution network. The control is based on an
inner current-control loop and an outer dc-link voltage regu-
lator. The current-control mechanism decouples the PV system
dynamics from those of the network and the loads. The dc-link
voltage-control scheme enables control and maximization of the
real power output. Proper feedforward actions are proposed for
the current-control loop to make its dynamics independent of
those of the rest of the system. Further, a feedforward compensa-
tion mechanism is proposed for the dc-link voltage-control loop, to
make the PV system dynamics immune to the PV array nonlinear
characteristic. This, in turn, permits the design and optimiza-
tion of the PV system controllers for a wide range of operating
conditions. A modal/sensitivity analysis is also conducted on a
linearized model of the overall system, to characterize dynamic
properties of the system, to evaluate robustness of the controllers,
and to identify the nature of interactions between the PV system
and the network/loads. The results of the modal analysis confirm
that under the proposed control strategy, dynamics of the PV
system are decoupled from those of the distribution network and,
therefore, the PV system does not destabilize the distribution
network. It is also shown that the PV system dynamics are not
influenced by those of the network (i.e., the PV system maintains
its stability and dynamic properties despite major variations in
the line length, line ratio, load type, and load distance from
the PV system).

Index Terms—Control, eigenvalue analysis, feedforward, modal
analysis, participation factor, photovoltaic (PV), power electronics,
voltage-source converter (VSC).
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VSC ac-side terminal voltage.

VSC-filtered voltage; PCC voltage.

Load voltage.

Substation (grid) bus voltage.

DC-link (PV array) voltage.
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VSC ac-side current.

Distribution line current between the PCC and
load.

Distribution line current between the load and
substation.

Load current.

PV array current.

PV array power.

Real power output of the PV system at PCC.

Reactive power output of the PV system at
PCC.

Interface transformer turns ratio.

Inductance of the VSC interface reactor.

Resistance of the VSC interface reactor.

Line inductance between the PCC and load.

Line inductance between the load and
substation.

Line resistance between the PCC and load.

Line resistance between the load and substation.

Line length.

Load distance from the PV system, normalized
to line length.

DC-link capacitance.

Shunt capacitance at PCC; VSC filter
capacitance.

Load power-factor correction capacitance.

-frame angular speed.

Grid nominal frequency (e.g., 377 rad/s).

-frame reference angle.

Real part of.

Imaginary part of.

Superscript denoting small-signal perturbation
of a variable.

“0” Subscript denoting the steady-state value of a
variable.
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Superscript denoting the peak value of a
three-phase variable.

Superscript denoting the complex-conjugate of
a space phasor.

“ ” Superscript denoting the matrix transposition.

Solar irradiation level, normalized to 1.0
kW/m .

Complex frequency .

I. INTRODUCTION

I N recent years, the concept of distributed generation (DG),
which permits installation of relatively small-scale power

generators at the medium-/low-voltage distribution levels of the
power system, has gained widespread attention due to its tech-
nical, economical, and environmental benefits [1]. Among DG
systems,photovoltaic(PV)solarsystemshaveattractedconsider-
able investment in several countries [2], such that significant pen-
etration of the PV energy into distribution networks has already
taken place in Europe, through single- and three-phase systems,
and more penetration is anticipated worldwide. So far, PV sys-
tems of single- or double-digit megawatt (MW) capacities have
been connected to the power system, mainly, at the subtransmis-
sion voltage levels. At the distribution voltage levels, most PV
systems mainly consist of rooftop installations with capacities of
a few kilowatts which are unlikely to make an impression on the
distribution networks and the loads. These PV systems are not
even permitted to cause a reverse power flow. This is, however,
not the case for large-scale PV systems which have considerably
higher capacities and more sophisticated controls. Thus, in view
of the increasing market for multi-megawatt photvoltaic systems
and in response to utility companies concerns about the impact of
large-scale PV systems on the feeders/customers, investigations
on the control, dynamic properties, transient performance, and
interactions with the network/loads of large-scale distributed PV
systems seem to be timely and of importance.

Many previous works have investigated different aspects of
PV systems, including the energy production and economics
[3]–[5]. The most widely addressed technical issue regarding
PV systems is the so-called maximum power-point tracking
(MPPT). Reference [6] reviews 19 different MPPT methods
introduced since 1968. The scope of the reported works encom-
passes both large-scale and distributed PV systems. Another
widely addressed topic is that of power converter configurations
and aggregation schemes for PV systems. References [7]–[10]
provide comprehensive surveys on different single-phase and
three-phase converter circuits for PV applications. Recently,
with the consideration of PV systems as DG units, research
works also report the integration of islanding detection schemes
into single-phase PV systems [11]–[14]. In addition, a fair
amount of the technical literature has dealt with the integration
of PV systems into distribution networks. The majority of
this body of the literature has focused on single-phase PV
systems, with an emphasis on their harmonic interactions with
the distribution networks [15]–[17] and on their impact on the
power quality (PQ) [18]–[20]. Research has also dealt with

transformer overload and feeder overvoltage issues. However,
only a few previous works have investigated the control and
stability aspects of PV systems.

Dynamic stability of single-phase, distributed PV systems
is investigated in [21] and [22]. Reference [21] has conducted
an eigenvalue analysis for a two-stage configuration, with the
model of the dc cable between the two stages considered. How-
ever, the distribution line and loads are not modeled. Reference
[22] has studied the impact of grid impedance variations on the
closed-loop stability of a single-phase PV system. Moreover, a
control design methodology to ensure the provision of adequate
damping has been presented.

A number of works have studied dynamic models, sta-
bility, and/or the control of three-phase, single-stage PV
systems [25]–[28]. Reference [25] has elegantly developed a re-
duced-order model for a PV system; the model and the proposed
controllers are based on the voltage-mode control strategy, and
they can be conveniently incorporated into time-domain power
system simulation studies. This paper, however, does not provide
a stability analysis or controller design methodology.

A number of works [26]–[28] have adopted the current-mode
control strategy. Reference [26] identifies the control loops and
the transfer functions of the PV system, but does not report
any analysis of the stability or interactions with the line/loads.
Reference [27] has adopted a similar analysis approach as in
[26], with an emphasis on the impact of grid impedance on the
closed-loop stability and not on the interaction between the PV
system and the distribution network. In [28], the behavior of a
three-phase, single-stage PV system has been studied, with an
emphasis on the MPPT strategy rather than on the control or sta-
bility of the PV system.

This paper proposes an effective control strategy for a
single-stage, three-phase PV system which is connected to a
distribution network. The proposed control strategy is based on
a modified version of the conventional current-mode control
and is used to 1) regulate the PV system power factor and 2)
to control the converter dc-link voltage and, therefore, the PV
system real-power output, through a dc-link voltage-control
scheme. In addition to protecting the PV system against external
faults, the modified current-control strategy virtually decouples
the PV system from the distribution network and the loads, as
analytically shown in this paper. The dc-link voltage-control
scheme, on the other hand, ensures stable operation of the
PV system, guarantees safe operation of the voltage-source
converter (VSC) of the PV system, and permits incorporation
of an MPPT scheme. This paper also proposes a feedforward
compensation strategy for the dc-link voltage-control loop,
to eliminate the impact of the nonlinear characteristics of the
PV panels on the closed-loop stability. The proposed feedfor-
ward compensation permits the design of the dc-link voltage
controller irrespective of the PV system operating point, and
also renders the closed-loop eigenvalues of the PV system
insensitive to solar irradiation and dc-link voltage levels. The
effectiveness of the proposed control strategy, and its robust-
ness against changes in the operating conditions, distribution
network parameters, and load types/parameters are demon-
strated through nonlinear, time-domain simulations as well as
a comprehensive modal analysis.
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Fig. 1. Single-line schematic diagram of a single-stage photovoltaic (PV) system interfaced with a distribution network.

The rest of this paper is organized as follows. Section II intro-
duces the structure of the single-stage, three-phase PV system.
Sections III and IV present a mathematical model and the con-
trollers of the PV system. In Section V, a small-signal model for
the overall system consisting of the PV system, the distribution
network, and the load(s) is developed and verified. Section V
also presents the result of a modal analysis carried out on the
linearized model of the overall system. Section VI concludes
this paper.

II. STRUCTURE OF THE PV SYSTEM

Fig. 1 shows a single-line schematic diagram of a three-phase,
single-stage PV system interfaced with a distribution network
at the point of common coupling (PCC). The main building
blocks of the PV system are an array of PV panels, a VSC, and a
three-phase interface reactor. The array of PV panels, hereafter
referred to as the PV array, is composed of the parallel connec-
tion of strings of panels to ensure adequately large power. In
turn, to ensure an adequately large dc voltage, each string con-
sists of a number of PV panels connected in series; this, in total,
corresponds to series-connected PV cells. The PV array is
connected in parallel to the dc-link capacitor and the dc-side
terminals of the VSC. The VSC is controlled based on the sinu-
soidal pulse-width modulation (SPWM) strategy. The interface
reactor connects the ac-side terminals of the VSC to the corre-
sponding phases of the PCC. The resistance and inductance of
the interface reactor are represented by and , respectively.
also includes the resistance of the VSC valves. and rep-
resent the real- and reactive-power output that the PV system
delivers to the distribution network. In emergency conditions
when the PV system must be shut down, the breaker isolates
the PV system from the distribution network.

Fig. 1 also includes a schematic diagram of the distribution
network and an aggregate of loads. In this paper, the distribu-
tion network is referred to as the composition of a distribution
line, the transformer , and the shunt capacitors and .

steps down the network voltage to a level suitable for the PV

system. The high-voltage side of has a winding config-
uration and is solidly grounded. provides a low-impedance
path for the current harmonics generated by the PV system, and
prevents them from penetrating into the distribution network.

As Fig. 1 shows, the distribution network is supplied by a
utility substation which is represented by the voltage source .
In addition, a (three-phase) load is connected to the line at a lo-
cation between the PCC and the substation. The inductance and
resistance of the distribution line segment between the PCC and
the load are represented by and , respectively. and
also include the leakage inductance and the winding resistance
of , respectively. Similarly, and , respectively, repre-
sent the inductance and resistance of the line segment between
the load and the substation. It should be pointed out that, for the
purpose of analysis in this paper, and are considered parts
of the distribution network. However, practically, the former is
an integral component of the VSC filter, whereas the latter rep-
resents the load power-factor correction capacitor.

III. LARGE-SIGNAL MODEL

A. PV System Model

The PV array is described by its current–voltage character-
istic function, as [29]

(1)

where is the reverse saturation current of a junc-
tion, is the unit electric charge,

is Boltzman’s constant, is the junc-
tion temperature (in Kelvin), is the ideality factor, and is
the short-circuit current of one string of the PV panels. , a
function of the temperature, is a linear function of the solar ir-
radiation level , as

(2)

where is the cell reference temperature, is the short-
circuit current of one PV cell at the reference temperature and
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Fig. 2. Power-voltage characteristic curve of a PV array.

irradiation level, and is a temperature coefficient. Based on
(1), the power delivered by the PV array (i.e., ) is
expressed as

(3)

Fig. 2 illustrates the variations of as a function of , for
different levels of the solar irradiation. Fig. 2 shows that for a
given irradiation level, is zero at but increases
as is increased. However, this trend continues only up to
a certain voltage at which reaches a peak value; beyond
this voltage, decreases with the increase of . The afore-
mentioned behavior suggests that can be controlled/max-
imized by the control of . This is referred to as the “max-
imum-power-point tracking” (MPPT) in the technical literature
[6].

Dynamics of the dc-link voltage are described, based on the
principle of power balance, as

(4)

where denotes the power delivered to the VSC dc side (see
Fig. 1). Ignoring the VSC power loss, can be assumed to
be equal to , that is, the real component of the VSC ac-side
terminal power. , in turn, is the summation of and the real
power absorbed by the interface reactor [30]. Thus

(5)

where denotes the space-phasor representation of a three-
phase quantity and is defined as [31]

(6)

Substituting for from (5) in (4), one deduces

(7)

Equation (7) suggests that and, thus, can be controlled

by the VSC ac-side current . It should also be noted that (7)
represents a nonlinear dynamic system, due to the nonlinear de-
pendence of on (see (3) and Fig. 2) as well as the pres-

ence of the terms , , and .
The dynamics of the VSC ac-side current are described by the

following space-phasor equation:

(8)

, that is, the VSC ac-side terminal voltage can be controlled
as

(9)

where represents the space-phasor corresponding to the
PWM modulating signals which are normalized to the peak
value of the triangular carrier signal. Substituting for from
(9) in (8), one deduces

(10)

Equations (7) and (10) constitute a state-space model for the PV

system in which and are the state variables, is the con-
trol input, and and are the exogenous inputs. It should be
noted that itself is a state variable of the distribution network
system, as discussed in the next subsection.

B. Distribution Network Model

If , , , and are chosen as the state variables, the
following state-space model can be derived for the distribution
network:

(11)

(12)

(13)

(14)

where the PV system ac-side current and the load current
act as exogenous inputs to the distribution network subsystem.
In (14), it is assumed that is a balanced three-phase
voltage whose amplitude and phase angle are and , re-
spectively.

C. Load Model

Three types of three-phase, balanced loads—an asyn-
chronous machine, a series circuit, and a thyristor-bridge
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rectifier are considered in this paper. A space-phasor model
of an asynchronous machine can be found in [31] or [32].
The model can be expressed in the standard state-space form,
through minor algebra, which is not presented here for space
limitations. The procedures to derive the state-space models of
the load and the rectifier load are presented in detail in
Appendix A.

IV. PV SYSTEM CONTROL

For the PV system of Fig. 1, the main control objective is
to regulate the dc-link voltage to control/maximize the power
extracted from the PV array. Fig. 1 indicates that: 1) the VSC
PWM and control are synchronized to the network voltage
through a phase-locked loop (PLL) [33]. Thus, the three-phase
ac signals are transformed into proper -frame counterparts,
and the controllers process dc equivalents rather than original
sinusoidally-varying signals and 2) the error between (the
square of) the dc-link voltage and its corresponding reference
value is processed by the compensator whose output
is augmented by a feedforward signal to issue the current
command . The feedforward compensation counteracts the
destabilizing and nonlinear characteristic of the PV array and
enhances the PV system stability. The dc-link voltage reference
is usually obtained from an MPPT scheme and is permitted
to vary from a lower limit to an upper limit. The limits on
the dc-link voltage ensure proper and safe operation of the
VSC; and 3) the command is delivered to a -frame
current-control scheme that forces to track . The control
of enables the control of and . A saturation block
limits to protect the VSC against overload and external
faults. The current-control scheme also forces to track .
It is also discussed in Section IV-A that is proportional to

. Hence, if 0, becomes zero in the steady state and
the PV system exhibits a unity power factor to the distribution
network. The unity power-factor operation also results in a
minimized magnitude for the VSC line current, for a given
real-power flow.

Details of the aforementioned three control schemes are dis-
cussed in the following subsections.

A. Phase-Locked Loop (PLL)

For analysis and control purposes, space-phasor variables in
the models of the PV system, the distribution network, and the
load are projected on a -frame. This is achieved by replacing
each space phasor by its -frame equivalent, as

(15)

If represents a state variable, is calculated as

(16)

where is the -frame angular speed, as

(17)

Fig. 3. Block diagram of a phase-locked loop (PLL).

The space phasor to the -frame transformation is defined as

(18)

In the system of Fig. 1, the three-phase signals vary with time
at the grid frequency . Therefore, the -frame variables be-
come time invariant (in a steady state) if the -frame angular
velocity is made to be equal to . This objective is fulfilled by
means of the PLLs of Fig. 3, [33], in which is first resolved
into the - and the -axis components, based on (18), and then

is processed by the compensator to determine . In a
steady state, is forced to zero while becomes equal to .
Therefore, must include at least one integrator (i.e. one
pole at ).

Let be a proportional-integral (PI) compensator cas-
caded with a first-order, low-pass transfer-function, as

(19)

where and are the Laplace transforms of
and , respectively. If the two state variables

and are defined as

(20)

(21)

then, in view of (17), the following state-space model can be
formulated for the PLL:

(22)

(23)

(24)

where

(25)

(26)

(27)

(28)

(29)



YAZDANI AND DASH: CONTROL METHODOLOGY AND CHARACTERIZATION OF DYNAMICS 1543

Fig. 4. Block diagrams of (a) ��-frame current-control scheme. (b) DC-link voltage-control scheme.

Equations (22)–(24) introduce the PLL as a dynamic system of
which the inputs are and ; the state variables are , ,
and ; and the outputs are and .

Regulation of at zero also has the effect that the
expression for the PV system real-power output (i.e.,

) is simplified to

(30)

Equation (30) indicates that is proportional to and can be
controlled by . As indicated in (7), is controlled to regulate
the dc-link voltage and to control/maximize the power extracted
from the PV array. Consequently, the control of boils down to
the control of , as illustrated in Fig. 1. Similarly, the expression
for is simplified to

(31)

Thus, can be regulated by to adjust the power factor that
the PV system exhibits to the distribution network.

B. VSC Current Control

The need for controlling and was explained in Sec-
tion IV-A. In this section, a current-control scheme is devised
to ensure that and rapidly track their respective reference
commands and . The current-control strategy also
enhances protection of the VSC against overload and external
faults, provided that and are limited.

The current-control scheme is designed based on (32) and
(33) which are the -frame equivalents to (10). Thus

(32)

(33)

In (32) and (33), and are the state variables and the outputs,
and are the control inputs, and and are the distur-

bance inputs. Due to the factor , the dynamics of and are
coupled and nonlinear. To decouple and linearize the dynamics,

and are determined based on the following control laws:

(34)

(35)

where and are two new control inputs [34]. Substituting
and in (32) and (33), respectively, from (34) and (35),

one deduces

(36)

(37)

Equations (36) and (37) represent two, decoupled, linear,
first-order systems in which and can be controlled by
and , respectively. Fig. 4(a) illustrates a block diagram of the

-frame current-control scheme [i.e., a realization of (34) and
(35)]. Fig. 4(a) shows that the control signal is the output of a
compensator , processing the error signal .
Similarly, is the output of another compensator that
processes . It should be noted that to produce
and , the factor is employed as a feedforward signal
to decouple the dynamics of and from those of . The
PWM modulating signals are generated by transformation of

and into , , and [not shown in Fig. 4(a)], and
the gating pulses for the VSC valves are sent out.

Since the control plants of (36) and (37) are identical,
and can also be identical. Let

(38)

where and are the proportional and integral gains, respec-
tively. If and are selected as

(39)

(40)
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then the closed-loop transfer functions of the - and -axis cur-
rent controllers assume the first-order form

(41)

where the time-constant should be made small for a fast cur-
rent-control response, but adequately large so that (i.e., the
bandwidth of the closed current-control loop) is considerably
(e.g. ten times) smaller than the VSC switching frequency (in
radians per second). In this paper, is equal to 0.5 ms. It is
noted that the foregoing control method renders the dynamics
of and decoupled from those of , , , and .

C. DC-Link Voltage Control

The DC-link voltage is controlled by , based on the model
of (7) whose -frame equivalent is

(42)

In (42), the first and second terms represent the (real) power de-
livered by the PV array and the PV system, respectively. The
third and fourth terms, respectively, represent the power ab-
sorbed by the inductance and the resistance of the VSC interface
reactor. Ignoring the third and fourth terms of (42), and consid-
ering that is regulated at zero by the PLL, a reduced-order
model is obtained for the dc-link voltage dynamics as

(43)

Equation (43) represents a control plant whose input is ,
assuming that the time-constant in (41) is so small that

holds. In (43), is the state variable as well as the output
and is an exogenous input (disturbance). The control plant
of (43) is nonlinear since 1) is a nonlinear
function of , and 2) itself is a nonlinear function of the
state-variable . To mitigate the impact of nonlinearities on
the control, the following control law is adopted for :

(44)

where is a new control input, and is a gain which can be
unity or zero. is calculated from the product
of and . The substitution of from (44) in (43) yields

(45)

Equation (45) indicates that if 1, the impact of the PV array
characteristic on the dc-link voltage control is eliminated, and
the effective control plant becomes an integrator. Although the

product also introduces a nonlinearity, its impact is in-
significant since practically is a relatively constant variable.

is the output of a compensator as

(46)

where the error signal is . Equation (46) rep-
resents a PI compensator cascaded with a first-order low-pass
filter. and are, respectively, the proportional and inte-
gral gains of the PI compensator, whereas is the pole of the
low-pass transfer function.

Fig. 4(b) illustrates a block diagram of the dc-link voltage-
control scheme described before. It is noted that if 1, the
effective control plant from to is composed of an inte-
grator cascaded with the first-order transfer-function . For
such a plant, the method of “symmetrical optimum” provides a
systematic tool for calculating the parameters of a PI compen-
sator [32] and is utilized in this paper.

V. STABILITY ANALYSIS

To evaluate the stability of the PV system under the proposed
control strategy and to investigate the potential for interactions
between the PV system and the distribution network/load, an
eigenvalue analysis is carried out on a linearized state-space
model of the overall system. The linear model parameters are
functions of the steady-state operating point of the system. For
the purposes of modeling and analysis, the system of Fig. 1 is di-
vided into four subsystems. The subsystems are: 1) the PLL sub-
system, 2) the converter subsystem, 3) the distribution network
subsystem, and 4) the load subsystem. The linearized models of
the aforementioned subsystems are discussed next.

A. Linearized Model

1) Linearized Model of the PLL Subsystem: The PLL sub-
system is described by (22)–(24) which are linear. Therefore,
the linearized model of the PLL subsystem also preserves the
forms of (22)–(24) as

(47)

(48)

(49)

where

(50)

Equations (47)–(49) describe the PLL as a subsystem for which
and are the inputs obtained from the distribution network

subsystem, is the output delivered to the distribution network
and load subsystems, and is the output delivered to the distri-
bution network subsystem.

2) Linearized Model of the Converter Subsystem: The
converter subsystem is referred to as the composition of the
PV array, the VSC in conjunction with the dc-link capacitor
and the interface reactor, the current-control scheme, and the
dc-link voltage regulator. A linearized model of the converter
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subsystem is developed based on (3), (41), (42), (44), and (46).
The process yields

(51)

(52)

where

(53)

In (53), and are the state variables of the compensator
.

Equations (51) and (52) constitute a linearized model for the
converter subsystem. The equations indicate that and
are the inputs obtained from the distribution network subsystem,
while and are the outputs delivered to the distribution net-
work subsystem.

3) Linearized Model of the Distribution Network Subsystem:
Based on (11)–(14), a linearized model for the distribution net-
work assumes the form

(54)

(55)

(56)

where

(57)

Equations (54)–(56) describe the distribution network as a sub-
system for which and are the inputs obtained from the con-
verter subsystem, and are the inputs obtained from the
load subsystem, and and are the inputs obtained from the
PLL subsystem. On the other hand, and are the outputs
delivered to the load subsystem; and and are the out-
puts delivered to the PLL and converter subsystems. It should
be noted that represents the perturbation of the phase angle of

relative to that of the grid voltage . The steady-state
value of the phase angle (i.e., ) is determined by the real- and
reactive-power flow of the system.

4) Linearized Model of the Load Subsystem: In this paper,
three types of loads are studied: a squirrel-cage asynchronous
machine, a series branch [Fig. 12(a)], and a thyristor-
bridge rectifier [Fig. 12(b)]. Based on the large-signal models
of the foregoing loads, the linearized model of a load can be
expressed in the following generic form:

(58)

(59)

where , , , , , and have different entries and di-
mensions depending on the load type. is the load-free control
input of the asynchronous machine load and the rectifier load,
representing the mechanical torque and the firing angle, respec-
tively. However, the series – load does not have such a con-
trol input. Therefore, the entries of the corresponding matrix
are zero for the series – load. Similarly, does not appear
in the linearized model of the rectifier load. Consequently, the
entries of are zero for the rectifier load.

Equations (58) and (59) describe the load as a subsystem for
which and are the inputs obtained from the distribution
network subsystem, and is the input obtained from the PLL
subsystem. On the other hand, and are the outputs deliv-
ered to the distribution network subsystem.

5) Linearized Model of the Overall System: A linearized
model of the system of Fig. 1 is developed based on (47)–(50),
(51)–(53), (54)–(57), and (58) and (59). The model is derived
by substituting for the output(s) of a subsystem in the relevant
input(s) of another subsystem. The process yields

(60)

where is the number of the load state variables, and

(61)

An output of interest, for example , can be calculated by

(62)

where is the corresponding output matrix. In Section V-C,
the linearized model of (60) is employed in conjunction with a
sensitivity analysis to characterize the dynamics of the overall
system under the proposed control strategy.

B. Model Validation and Performance Evaluation

To demonstrate the effectiveness of the proposed control
strategy, a detailed switched model of the system of Fig. 1 is
simulated in the PSCAD/EMTDC software environment [35].
The switched model is also used to verify the linearized model
of the overall system, described by (60)–(62), which is imple-
mented in Matlab/Simulink. The following subsections report
the results of a number of case studies. The system parameters
are given in Appendix B.

1) Case 1: DC-Link Voltage Step Response: Initially, the
system of Fig. 1 is in a steady state, and the reference com-
mands and are set to 1.0 kV and zero, respectively.
The feedforward compensation of the dc-link voltage controller
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Fig. 5. Step responses of the dc-link voltage obtained from (a) the linearized
model and (b) the switched model.

is also enabled (i.e., ). An asynchronous machine is con-
nected to the middle of the distribution line. The machine is used
as a generator with a mechanical torque of 0.71 p.u. to emu-
late a neighboring DG unit, for example, a constant-speed wind
turbine. At s, is subjected to a step change to 1.1
kV. Fig. 5 illustrates the response of the dc-link voltage to the
disturbance, for three irradiation levels of 0.1, 0.5, and 1.0.
Columns (a) and (b) of Fig. 5 illustrate the responses obtained
from the linearized and the switched models, respectively. As
observed from Fig. 5, the dc-link voltage settles at 1.1 kV in less
than 0.1 s. Fig. 5 demonstrates the close agreement between the
linearized model and the switched model.

2) Case 2: Effectiveness of Feedforward Compensation: In
this case, the system operates under the same conditions as those
of Case 1, with the exception that 1.1 kV. At s,

is reduced stepwise to 1.015 kV. Fig. 6(a) illustrates the
response of to the disturbance when the feedforward com-
pensation is in service. As Fig. 6(a) shows, tracks its ref-
erence value and settles in less than 0.1 s. On the other hand,
Fig. 6(b) illustrates the response of when the feedforward
compensation is disabled (i.e., ). It is observed that subse-
quent to the disturbance, starts to oscillate with a frequency
of about 15.6 Hz. For this case, an eigenvalue analysis on (60)
reveals the existence of a pair of complex-conjugate eigenvalues
at of which the imaginary part corresponds to a
15.9-Hz oscillatory mode. This is in close agreement with the
response obtained from the switched model, shown in Fig. 6(b).

Fig. 7(a) and (b) shows the oscillations of and when the
feedforward compensation is inactive. Fig. 7(c) illustrates that
the angular speed of the -frame (i.e., ) also oscillates with
the same frequency as those of and . The oscillations pen-
etrate into the distribution network and affect the asynchronous
machine speed, as shown in Fig. 7(d), which may excite the tor-
sional modes of the mechanical load. This indicates the need for
the proposed feedforward compensation scheme.

C. Modal Analysis

To characterize dynamics of the PV system of Fig. 1 under
the proposed control strategy of Section IV, to identify the

Fig. 6. Step responses of the dc-link voltage when (a) feedforward compensa-
tion is enabled and (b) feedforward compensation is disabled.

Fig. 7. PV system oscillations due to feedforward disablement.

nature of interactions between the PV system dynamics and
those of the network/loads, and to determine the robustness of
the proposed control against variations in various parameters,
eigenvalue analysis is carried out on the linearized model of
(60). For the analysis, all three types of load introduced in Sec-
tion V-A4 were tested and different network/load parameters
were changed. The findings indicated that under the proposed
control strategy, the PV system possesses similar dynamic
properties irrespective of the load type. Therefore, only the
results of the asynchronous machine case are reported in what
follows. Table I summarizes the essence of the system dynamic
properties.

Table I includes the eigenvalues of the overall system (i.e., the
solutions of ) under
the condition that the feedforward compensation is enabled. The
eigenvalues are calculated for the case that the asynchronous
machine load is connected to the middle of a 15-km distribution
line (i.e., 0.5, 1, and 1.1 kV). In order for the
asynchronous machine to represent a distributed generator, its
torque is set to the negative value of 0.7 p.u. Table I shows
the eight eigenvalues of the PV system, of which the first five
correspond to the converter subsystem, whereas the other three
are due to the PLL subsystem. For the network and the load,
only the dominant (electrical) eigenvalues are included. Table I
also includes the state variables of the overall system as well
as a measure of the participation of each state variable in the
eigenmodes corresponding to the eigenvalues.

Participation of a state variable in a mode corresponding
to is calculated from [36]

(63)

where and signify the th elements of the vectors and
, respectively . and are,
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TABLE I
OVERALL SYSTEM EIGENVALUES AND STATES PARTICIPATION FACTORS; � � 1, � � �� km, ��� � ���, � � 0.5

respectively, the right eigenvectors of and , corre-
sponding to the eigenvalue . In general, is a
complex number. However, the relative participation of a state
variable in an eigenmode is of prime interest here. Hence, the
norm is reported in Table I rather than .
The values are rounded off to the thousandths place; and any
relative participation smaller than 0.001 is denoted by “ 0” in
Table I.

Table I indicates that while the state variables of the PV
system actively participate in the eigenmodes corresponding to

to , the participation of the network and load-state vari-
ables in those eigenmodes is insignificant. The only exception
is the network state which participates relatively actively
in the eigenmode corresponding to . This, in turn, means
that the PV system eigenvalues and the corresponding eigen-
modes are weak functions of the network and load parameters.
Therefore, if the eigenmodes of the PV system are stable by
proper design of the controllers, they do not become unstable
as a result of variations in the network and load parameters.
The participation of in the eigenmode corresponding to
cannot pose any instability complications, since this mode is
very far from the imaginary axis of the -plane. It should be
noted that also represents the sensitivity of the eigenvalue

to the element of the system matrix [37]. Thus, a
closer look at Table I further indicates that the eigenvalues of
the PV system (i.e., to ), are insensitive to those elements
of that correspond to the network and load subsystems
(i.e., with ).

D. Sensitivity Analysis

Figs. 8–11 illustrate the patterns of variation of the real parts
of the system eigenvalues, signified by , as functions of various
parameters. For this analysis, all three types of load have been

Fig. 8. Pattern of variation for real part of the network eigenvalues as a function
of the normalized load distance from the PV system.

tested, and the eigenvalues with noticeable movement have been
included in the plots; the other eigenvalues are almost fixed.

Fig. 8 illustrates the variation of the real part of the network
eigenvalues , as a function of (i.e., the normalized load
distance from the PV system). Fig. 8 shows that the network
eigenvalues approach the imaginary axis of the -plane as
the distance between the load and the PV system increases.
Nonetheless, the corresponding mode remains stable and fast.

Fig. 9 illustrates the movements of the network eigenvalues
(i.e., , and the PV system eigenvalue ) as functions of
the line length varying from 5 to 40 km. As Fig. 9 indicates,
the network eigenmode becomes more stable, whereas the PV
system eigenvalue moves slightly to the right. This, however,
cannot cause any instability issues since 1) the change in the
real part of is less than 10%, and 2) is very far from the
imaginary axis of the -plane.



1548 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 24, NO. 3, JULY 2009

Fig. 9. Patterns of variation for real parts of two network eigenvalues and a PV
system eigenvalue as functions of the line length.

Fig. 10. Patterns of variation for real parts of two network eigenvalues and a
PV system eigenvalue as functions of the line ��� ratio.

Fig. 11. Patterns of variation for real parts of two PV system eigenvalues as
functions of the irradiation level.

Fig. 10 shows the variations of the network eigenvalues (i.e.,
) and the PV system eigenvalue as functions of the line
ratio. Fig. 10 illustrates that the mode corresponding to the

PV system eigenvalue becomes more stable as the ratio in-
creases, whereas the network modes exhibit opposite behavior.
The movement of the network eigenvalues to the right, however,

Fig. 12. Schematic diagrams of (a) �–� load and (b) rectifier load.

does not destabilize the system. The reasons are 1) are rel-
atively far from the imaginary axis of the -plane, and 2) their
movement rate becomes smaller as the ratio increases.

The impact of the solar irradiation level on the system eigen-
values is illustrated in Fig. 11. In this case, only the PV system
eigenvalues and are affected as changes; the eigen-
values exhibit opposite patterns of variation. However, the cor-
responding eigenmodes remain stable and very fast, regardless
of the irradiation level. Variation of the irradiation level exhibits
no noticeable impact on the network and load eigenmodes.

VI. CONCLUSION

This paper proposes a control strategy for a single-stage,
three-phase photovoltaic (PV) system that is connected to a
distribution network. The proposed control strategy adopts an
inner current-control loop and an outer dc-link voltage-control
loop. The current-control strategy permits dc-link voltage
regulation and enables power-factor control. Moreover, the
current-control strategy significantly decouples dynamics of
the PV system from those of the distribution network and
the loads. Furthermore, it is expected that the current-control
strategy renders the PV system protected against external faults.
The dc-link voltage-control scheme enables the control and/or
maximization of the real-power output of the PV system. This
paper proposes a feedforward compensation mechanism for
the dc-link voltage-control loop to mitigate the impact of the
nonlinear characteristic of the PV array, to permit the design
and optimization of the dc-link voltage controller for a wide
range of operating conditions. The effectiveness of the control
strategy is verified through digital time-domain simulation
studies conducted on a detailed switched model of the overall
system. In addition, a modal/sensitivity analysis is conducted
on a linearized model of the system to characterize the dynamic
properties of the PV system, to evaluate robustness of the
controllers, and to identify the nature of interactions between
the PV system and the network/loads. The results of the modal
analysis confirm that under the proposed control strategy,
dynamics of the PV system are decoupled from those of the
distribution network. This, in turn, means that the PV system
does not destabilize the distribution network. It is further
demonstrated that the PV system dynamics are not influenced
by the network dynamics. Thus, the PV system maintains its
stability and dynamic properties despite major variations in the
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TABLE II
SYSTEM PARAMETERS

line length, line ratio, load type, and distance between the
PV system and the loads.

APPENDIX A
MODELS OF LOADS

1) Series – Load Model: Fig. 12(a) illustrates the
schematic diagram of a three-phase, – load. Let us pick the

inductor (load) current as the state variable. Thus

(64)

2) Thyristor Rectifier Model: Fig. 12(b) illustrates a
schematic diagram of a thyristor-bridge rectifier supplying a
series, dc, – load. Picking the inductor current as the state
variable, one can write

(65)

where is the rectifier dc-side voltage. It is now assumed that
the rectifier operates in the continuous mode (i.e., ), and

is so large that is essentially ripple free. Thus, can
be approximated by its averaged component, as

(66)

where is the firing angle, and is the magnitude of . Sub-
stituting for from (66) in (65), one finds

(67)
An expression for the load current can be derived by using

the principle of power balance. Thus

(68)

The fundamental component of the phase current in a bridge
rectifier is delayed by the angle relative to the corresponding
phase voltage [38]. It then follows from the approximation of

by its fundamental component that:

(69)

where is the magnitude of the space-phasor corresponding
to the load (fundamental) current, and is the unit vector

collinear with . The substitution of from (69) in (68), and
simplification of the result in view of yields

(70)



1550 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 24, NO. 3, JULY 2009

Substituting for from (70) in (69), one deduces

(71)

Equations (67) and (71) constitute a state-space model for the
thyristor-bridge rectifier load.

APPENDIX B
SYSTEM PARAMETERS

The system parameters are presented in Table II.
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